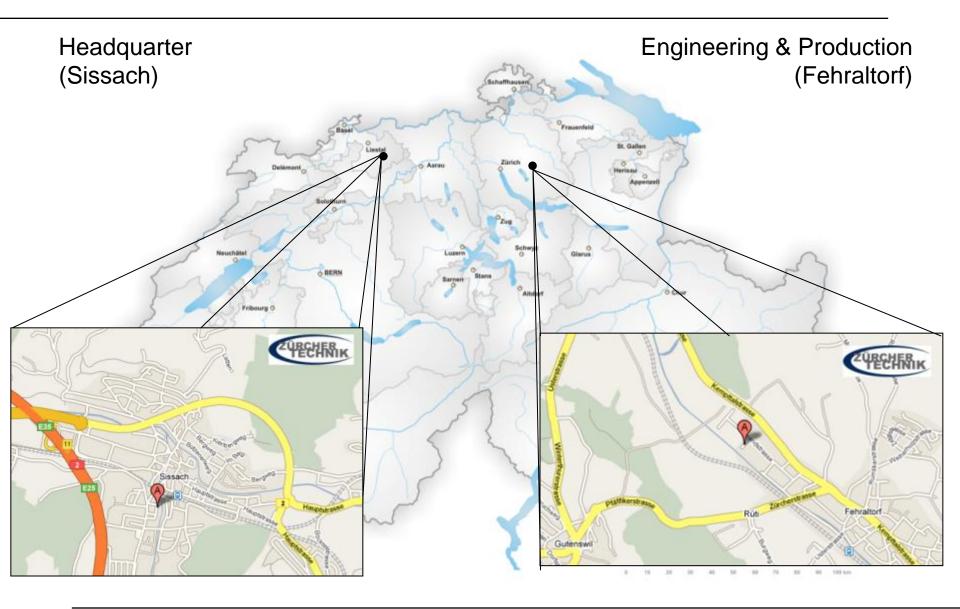
Welcome

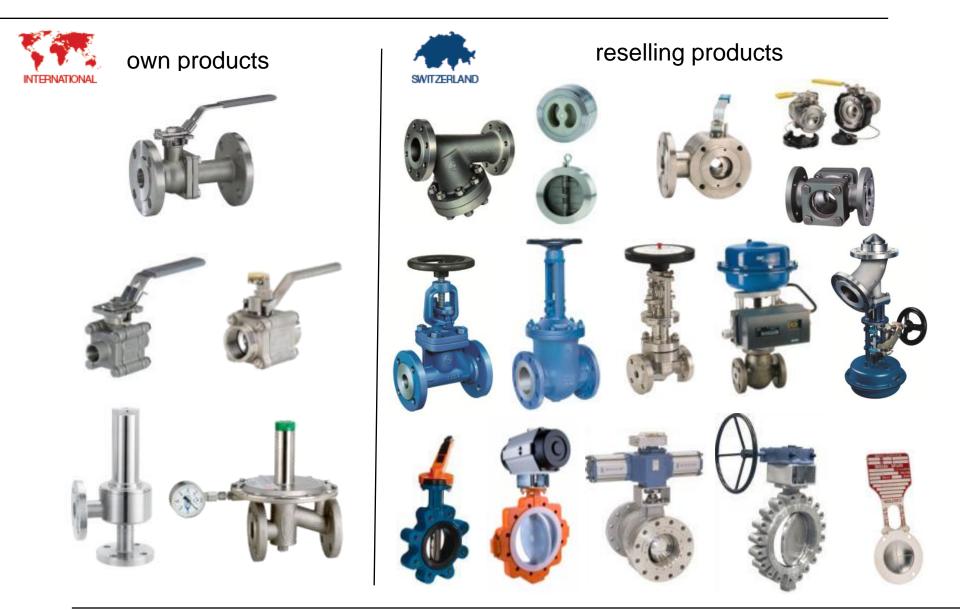
z ür c h er - t e c h n i k tel + 41 (0)61 975 10 10 ag für industrietechnik fax +41 (0)61 975 10 50 neumattstrasse 6 info@zuercher.ch ch-4450 sissach www.zuercher.ch



- Company Foundation 1986
- 26 employees

Company profile

Markets


Degrémont Technologies <u>svez</u>

The Chemical Company

Product range

- Fisher (Emerson)
- Instrum AG

www.instrum-gmbh.de

- Cashco
- Anderson Greenwood (Tyco)

www.andersongreenwood.com

- Mankenberg
- Jordan

Users:	- Gascompanies:	different application of industrial gases.
	- Natural gas:	fillingsystems for public transportation
	- Chemical industry:	Blanketing system
	- Pharmaceutical industry:	Blanketing systems, clean steam
	- Food industry:	Blanketing systems

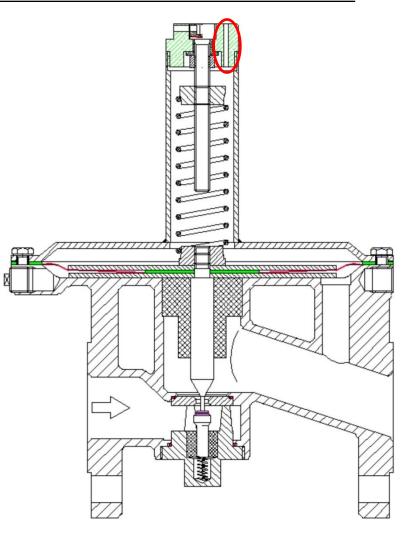
References:

syngenta

Low Pressure Regulators (BR- and BS-Series)

Highlights

- Regulating range up to 4000 mbar / 60 psi
- Sizes DN15 to DN 100 (1/2" to 4")
- Pressure resistance up to 16 bar
- Back pressure resistance up to 4000 mbar/60 psi
- Withstands full vacuum
- Stainless steel regulators
- Nickel Alloy Regulators
- PVDF regulators
- Clean and sterile regulators
- Maintenance friendly



In general...

Our Pressure Regulators are all relative Regulators. That means they regulate against the atmosphere.

The indicated pressures are plus or minus the atmosphere pressure.

In the process engineering we do differentiate between the reducer and the back pressure or relief valve.

Adjustement possibilities...

There are the following possibilities to adjust the required pressure on our regulators:

Spring-loaded regulators

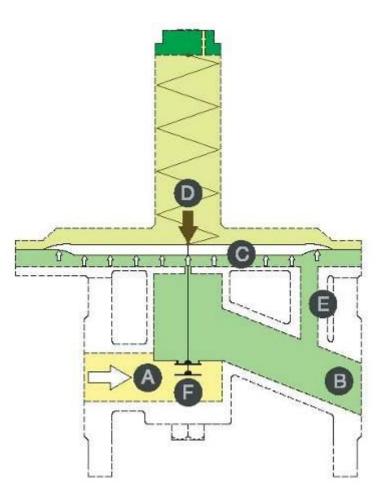
Dome-loaded regulators

and the combination of these two (pilot pressure regulator)

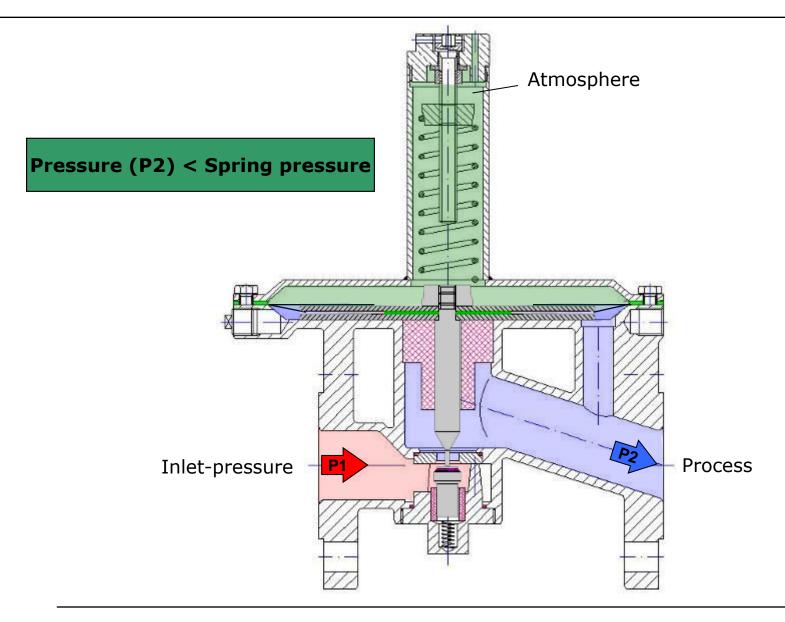
Reducing Regulator

The Reducer regulate the pressure on the outlet-side of the regulator.

A high inlet-pressure will be reduced by this valve on e deeper outletpressure.


The reducer opens if the pressure falls below the adjusted pressure.

In rest position the reducing regulators are open.

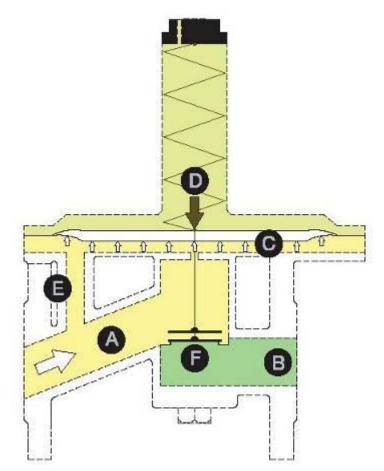


This Regulator keeps the process pressure "B" at a constant level.

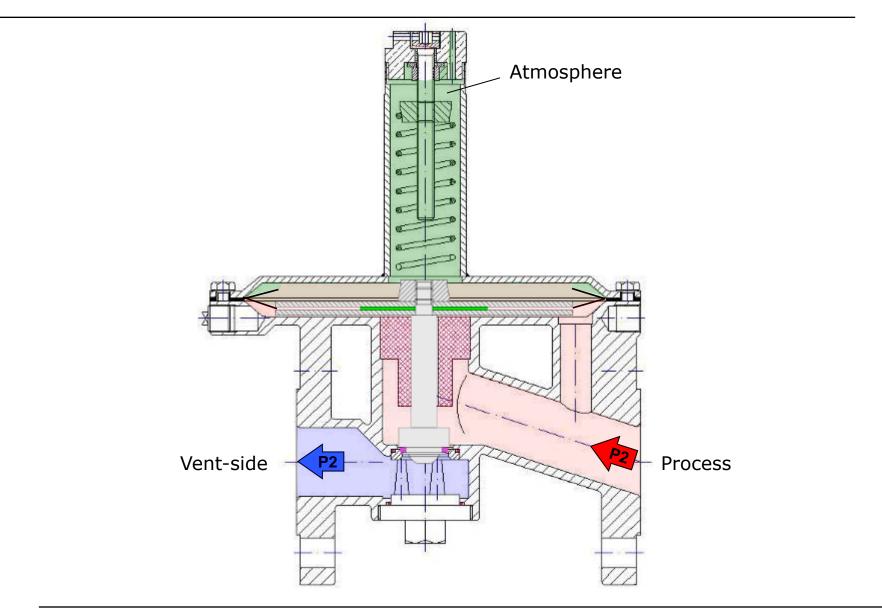
When the pressure "A" rises, pressure is released through the open valve seat "F" to the process side of the valve and through the internal feedback bore "E" underneath the diaphragm. This will continue, until the diaphragm force "C" exceeds the spring force "D", while the process pressure "B" rises. The diaphragm is lifted and the vale seat "F" closes. In the event that the process pressure "B" drops below the pre adjusted nominal pressure, the spring force "D" presses the diaphragm downwards, so that the valve seat "F" opens and admits gas until pressure equalization is reached again.

Relief Valve

The relief valve regulate the pressure on the inlet-side of the regulator.


This regulator opens if the pressure oversteps the setpressure.

In rest position the relief valves are closed.


This regulator keeps the process pressure "A" at a constant level.

When at rest, the regulator remains in a closed position. When the process pressure "A" increases, pressure is released through the internal feedback bore "E" underneath the diaphragm. If the diaphragm force "C" exceeds the spring force "D" the valve seat "F" opens and the over pressure is discharged to the vent side "B". If the process pressure "A" drops, the diaphragm force "C" is lower compared to the spring force "D" and the valve seat "F" closes. The pressure in the vent line can be atmospheric or vacuum. With vacuum in the vent line the flow capacity of the regulator is increased.

Relief Valve

As variants to the functions mentioned so far pressure regulators are in the execution as

Pilot Pressure Regulator

and as execution

"Vacuum-Regulator"

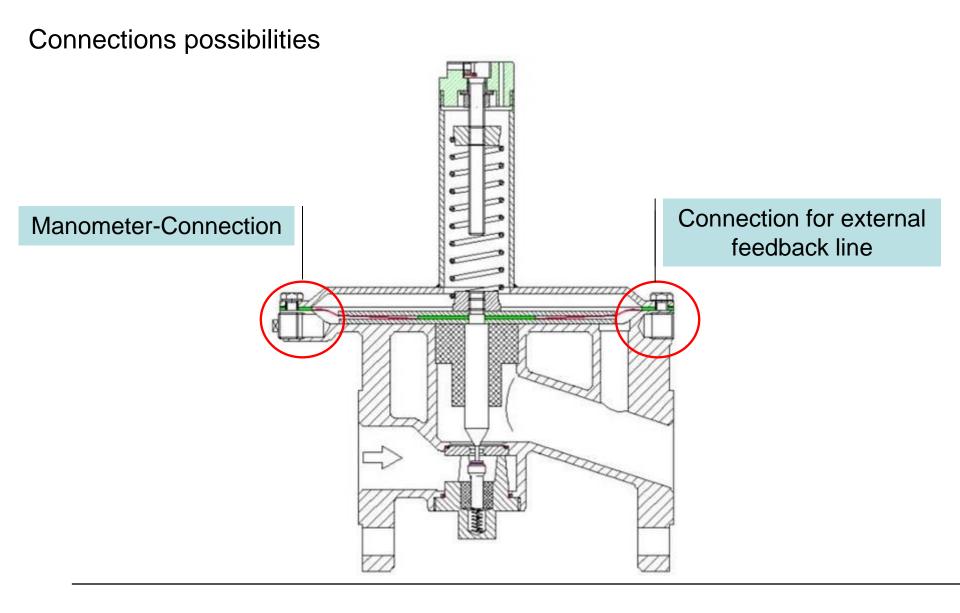
ZÜRCHER TECHNIK

Pilot Pressure Regulator are spring-loaded regulators.

The spring housing will be leak-proof designed. So it will be possible to set an additional pilot-pressure to the spring housing.

This variant can be set as reducer and also as back pressure regulator or relief valve.

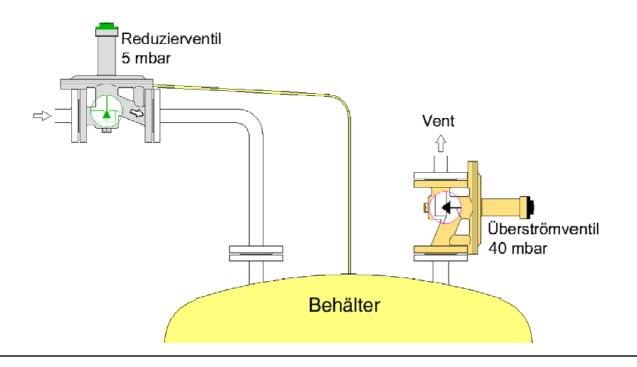
Attention!

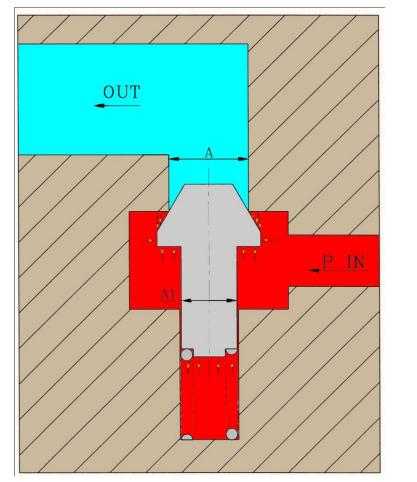

Spring-loaded pressure regulators do not have any "fail-safe" characteristic. That means:

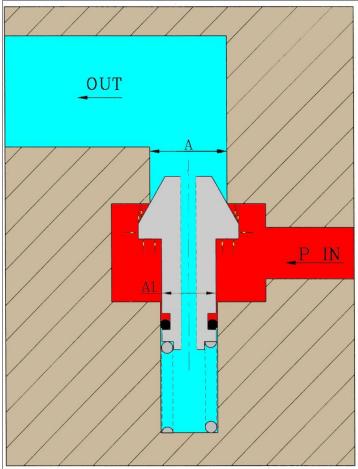
In case of a diaphragm-breaking, the reducer "burn out" and opens completely.

In case of a diaphragm-breaking, the relief valve stays closed.

Both of this types have no safety-function. They are both process valves and they are no safety features.


Connections (manometer und external feedback line)

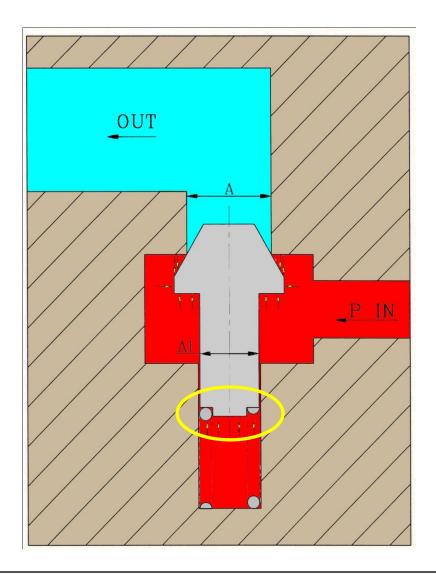

External feedback line


- low set pressure
- long distance between the regulator and the vessel

Unbalanced and balanced Seat

ZÜRCHER TECHNIK

Unbalanced seat


With the unbalanced seat the inlet pressure (P_{IN}) akt on the cone area A1 (yellow circle). The other areas on the cone head are neutralizing themself.

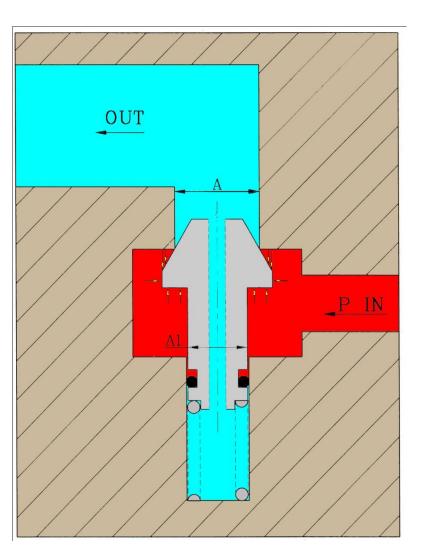
Example: BR25i, Sitz 10D

-6 mbar per bar inlet pressure difference:

Adjusted on P2 = 20 mbar On inlet pressure P1 = 2 bar

Inlet pressure change upto 6 bar g $\Delta P = 4$ bar = 4 x -6 mbar = -24 mbar

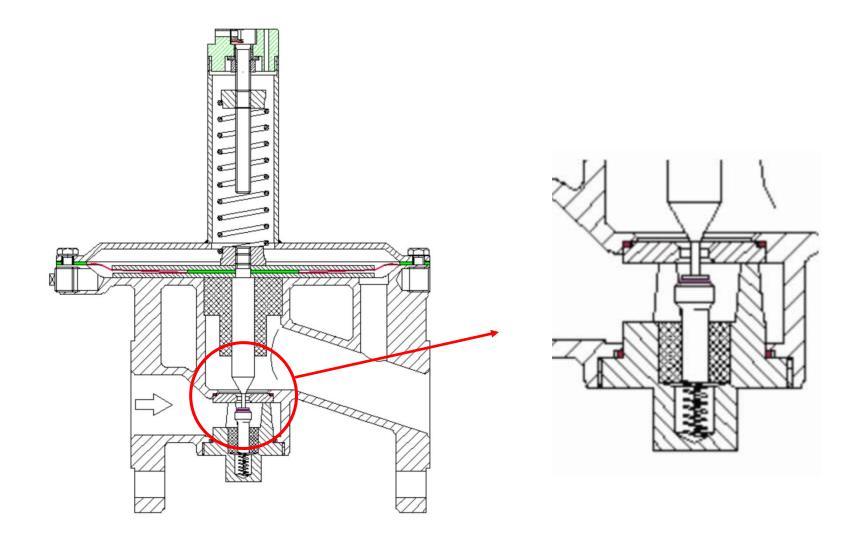
Balanced seat

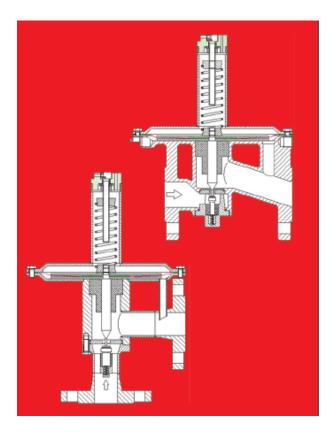

With the balanced seat the inlet pressure (P_{IN}) akt only on the cone head areas an they neutralizing themself.

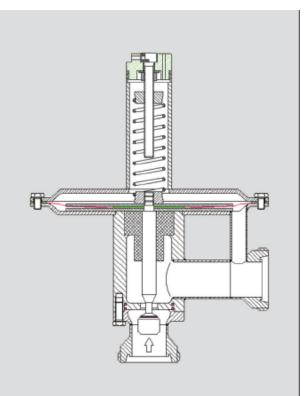
Example: BR25i, Sitz 10E

-0.2 mbar per bar inlet pressure difference:

Adjusted on P2 = 20 mbar On inlet pressure P1 = 2 bar

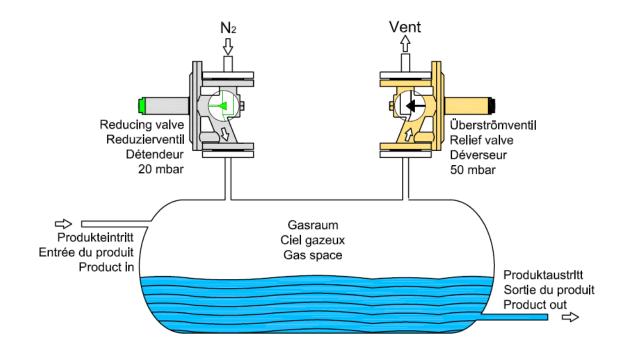

Inlet pressure change upto 6 bar g $\Delta P = 4$ bar = 4 x -0.2 mbar = -0.8 mbar


Decoupling

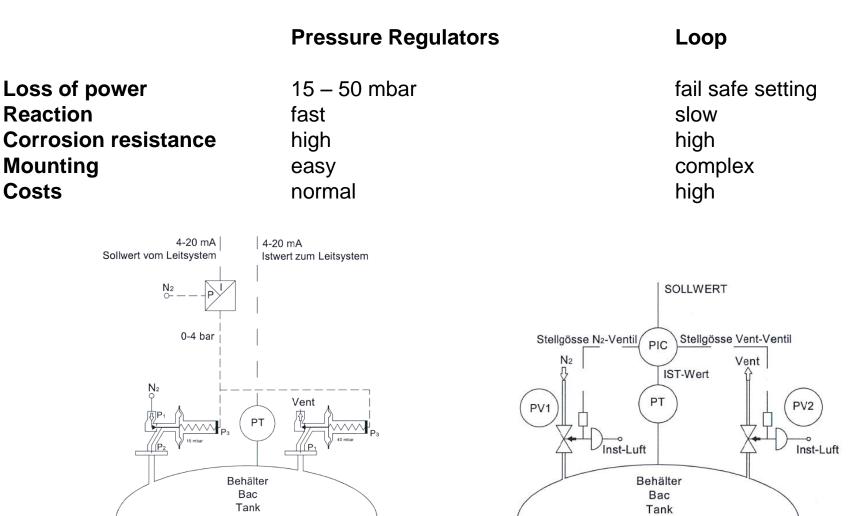


Standard Design

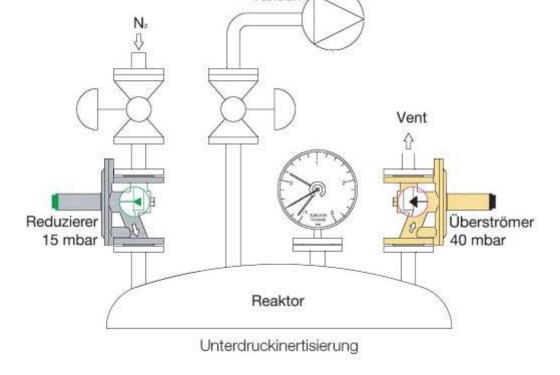
Application	For processes in the chemical-pharmaceutical industries, without substandard requirement.
Example of uses	Protection against explosion. Prevention of building an explosive mixture of gas by exchanging the atmospheric air with an inert gas.
Mounting form	Inline- and angle pattern
Surface	Without special treatment
Complete drain	No


Clean Design

Application	For procedures in the pharmaceutical industries and food production with increased requirements concerning surface treatment, dead space and cleaning.
Example of uses	Protection against oxidation. The replacement of the atmospheric air by an inert gas prevents the building of an oxidizing ambiance.
Mounting form	Angle pattern
Internal space	Rounded edges, minimized dead space
Surface	Roughness for areas in contact with media < Ra 0.6 µm, internal and external electropolishing as option.
Complete drain	Yes


When do you use these regulators?

- Protection against explosion, oxidation and contamination.



Why should we install pressure regulators for blanketing instead a loop?

The vacuum pump serves to suck off 80% of reactor atmosphere (residual pressure: 200 mbar abs.). Consequently, only 20% of the original oxygen molecules are still present inside the reactor. The missing volume is subsequently replaced by filling with nitrogen. This "thinning" of oxygen content of about 1 : 5 per inertisation cycle will be continued until the residual oxygen content inside

the reactor falls below the specified value. Instead of the described operation with vacuum, inertisation can be made even under overpressure in pressure-resistant reactors.

Vakuum

Two pressure regulators are required for optimum ventilation. One pressure reducing valve is needed for the nitrogen flow-in ("breathing-in"), and one relief valve is required for gas flow-out ("breathing-out"). The ventilation process takes place in a pressure range of 10 – 50 mbar in order to minimize the inert gas consumption. The aim of each ventilation process is to maintain the inert status inside the reactor throughout the fabrication process. The term "ventilation" may be replaced by such terms like "pressure superimposition", "tank blanketing", "padding" or others.

Technical Data

Ge

Engengsdruck P1 in Bar Ud	0,6	1	2	4	6	10	Sitz Ø	Kr	DN
Hinterdruck in mber Öd	0.5	12	20	29	49	85	4.mm	0.6	
10 mber	19.5	28	45	50	85		8 mm 8	1	16
STOTOTORY	33	45	77	65			10.mm	2	1.00
Hinterdruck in mbar Öd	9.5	12	20	29	49	86	4 mm	0.6	
50 mber	19.5	28	45	50	85		6.mm	1	16
ovince.	33	45	-77	60			10 mm	2	
Hinterdruck in mbar Öd	8.5	12	20	29	19	65	4 mm	0.6	
100 mbar	19,5	28	45	59	85	-	8 mm	1	16
and upper	33	48	.77	86			10.mm	2	1.00

ingangschuck P1 in Bar Od	0.5		2	4	6	10	Sitz Ø	KN	DA
Hinterdruck in mbar Öd	172	226	300	630	855	1585	21 mm	12	
10 mbar	430	575	945	1590	1950		\$2 mm	28	80
10 mbar	665	885	1470	1950			42 mm	40	
Hinterdruck in mbar Öd	172 228 380 630 855 1585 21 mm 1	12							
50 mbar	430	575	845	1590	1950		32.mm	28	80
ou muar	565	885	1470	1060		1	42 mm	40	
Hinterdruck in mbar Öd	172	228	380	630	:655	1585	21 mm	12	
100.mbar	430	575	945	1590	1950		32 mm	28	80
-100.mcar.	E65	885	1470	1060		1	42 mm	40	

Eingengsdruck P1 in Bar Üd	0.5	1	2										_		
Hinterdruck in mber Od	9 22	13	22 43	3	Abblasdruck P1 in mbar 0d	1000		1000	1000000	and the second	in states	1000000000			
10 mbar	r 46 65 110 2	2	Ausgangsdruck P2 in mbar	10	20	50	100	200	400	Sitz Ø	Kv	DN			
	50	125	200	2		10.5	245		-00	10	rr.				
	я	13	22	3	Atmosphärlsch	10.5	14.5	21	30	46	55	-			
Hinterdruck in mbar Od	22	31	43	6	-2 mbar Vakuum	11	15	21.5	30	46	55	14 mm		15	
60 mbar	46	125	110	2	-5 mbar Vakuum	12	16	22	31	47	56	14 mm	4	10	
	U	13	22	-	-10 mbar Vakuum	12.5	17	23	32	47	56				
Hinterdruck in mbar Öd 100 mbar	22 46	31 65	43 110	6	Atmosphärisch	22	34	47	65	100	125			1	
too mpar	40 90	-00PC/175	200	1000 I T	-2 mbar Vakuum	24	35	48	66	101	125	8			
				-5 mbar Vakuum	27	36	49	67	101	125	21 mm	9,5	25		
Eingengsdruck P1 in Bar Üd		1	2		-10 mbar Vakuum	34	40	50	68	102	126				
Hinterdruck in mbar Od		110 208	2		- 34	40		00	102	120			1		
10 mbar	172	226	200000	8	Atmosphärisch	105	140	210	300	460	560				
0.09003556	430	600	850		-2 mbar Vakuum	115	143	215	305	460	560				
	46	65	110		-5 mbar Vakuum	128	147	220	310	465	560	42 mm	40	50	
Hinterdruck in mbar Od 60 mbar	84 172	125	208	3	-10 mbar Vakuum	140	165	230	315	470	565				
200000	490	800	850		Atmosphärisch	210	280	420	600	920	1120				
	46	66	110	2								- I			
Hinterdruck in mbar Od	94	125	208	3	–2 mbar Vakuum	230	285	430	610	925	1120	67 mm	80	80	
100 mbar	172	229	380	8	-5 mbar Vakuum	255	295	440	620	930	1125				
	No.	- Participa			-10 mbar Vakuum	280	330	460	630	940	1130		4		
seechwindigkelt in de	Rohr	leitung	y:	4	Atmosphärisch	390	530	785	1130	1720	2100				
					-2 mbar Vakuum	425	555	800	1140	1730	2105	122	0.228		
					–5 mbar Vakuum	475	595	825	1160	1740	2110	82 mm	150	100	
					-10 mbar Vakuum	530	630	865	1220	1765	2120				

Process data from client:

- Maximum and minimum inlet and outlet pressure
- The fluid
- Requested flow rate
- Temperature
- Materials
- Connections
- Angle or inline pattern
- Inside or outside mounting (rain cover)

Additional information:

- Requested certification
- Options (external feedback line)

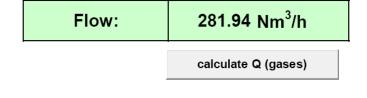
Calculating Example:	P1:	6 barg
	P2:	50 mbarg
	Flow:	150 Nm3/h
	Fluid:	Nitrogen (N2)
	Temp.:	20°C

Kv-Value

Q:	150	Nm ³ /h
density(p):	1.25	kg/m ³
P ₁ :	7	bar a
P ₂ :	1.05	bar a
ΔP:	5.95	bar
Temp:	20	°C

P2 ≥ P1 / 2

$$k_{v} = \frac{Q_{N}}{514} \cdot \sqrt{\frac{\rho_{N} \cdot T_{1}}{\Delta p \cdot p_{2}}} \qquad \qquad k_{v} = \frac{Q_{N}}{257 \cdot p_{1}} \cdot \sqrt{\rho_{N} \cdot T_{1}}$$


KV-Value:	1.60
	calculate Kv (gases)

Function	Size	Seat (mm)	KV-Value	CV-Value	KV-Value:	1.60
Reducer	DN15	4	0.6	0.7		
(BR-Series)	1/2"	6	1	1.2		
		10	2	2.3		
	DN25	4	0.7	0.8		
	1"	6	1.2	1.4		
		10	3	3.4		
		14	5	5.8		
	DN50	10	3	3.4		
	2"	14	5.5	6.3		
		21	12	13.8		
		32	26	30		
	DN80	21	12	13.8		
	3"	32	26	30		
		42	40	46		
	DN100	32	26	30		
	4"	42	40	46		
		67	80	92		

Flow capacity

Kv	3	
density(p):	1.25	kg/m ³
P ₁ :	7	bar a
P ₂ :	1.05	bar a
ΔP:	5.95	
Temp:	20	°C

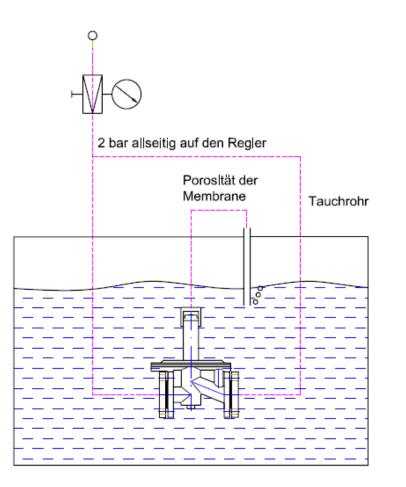
P2 ≥ P1 / 2

P2 < P1 / 2

$$Q_N = 514 \cdot k_v \cdot \sqrt{\frac{\Delta p \cdot p_2}{\rho_N \cdot T_1}} \qquad \qquad Q_N = 257 \cdot k_v \cdot p_1 \cdot \frac{1}{\sqrt{\rho_N \cdot T_1}}$$

Sizing (How to choose the right regulator)

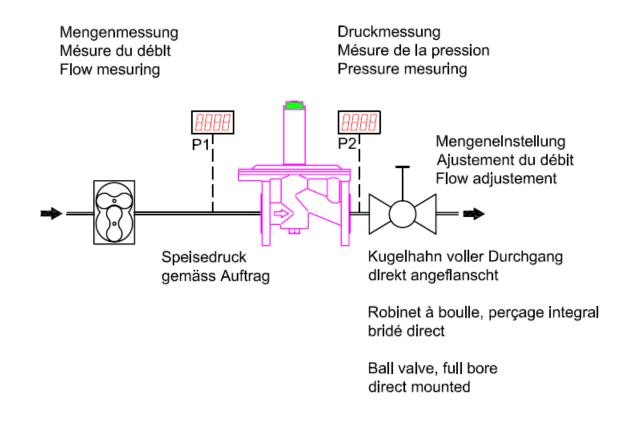
Flow capacity


Kv	3]		
density(p):	1.25	kg/m ³		Flow:	281.94 Nm ³ /h
P ₁ :	7	bar a		FIOW.	201.34 NIII /II
P ₂ :	1.05	bar a			
ΔP:	5.95	bar			calculate Q (gases)
Temp:	20	°C			
P2 ≥ P1 / 2		1	P2 < P1 / 2		
$Q_N = 514 \cdot k_v$	$\sqrt{\frac{\Delta p \cdot p_2}{\rho_N \cdot T_1}}$		$Q_N = 257 \cdot k_v \cdot p_1 \cdot \frac{1}{\sqrt{\rho_N}}.$	<u>7</u>	

			Nm	13/h			
p1 barg	1	2	3	4	5	6	Sitz Ø
	15	23	30	38	45	53	4
p2 mbarg							
	30	45	60	74	89	104	6
10 - 900							
	75	112	150	188	225	263	10
	129	194	259	324	388	450	14

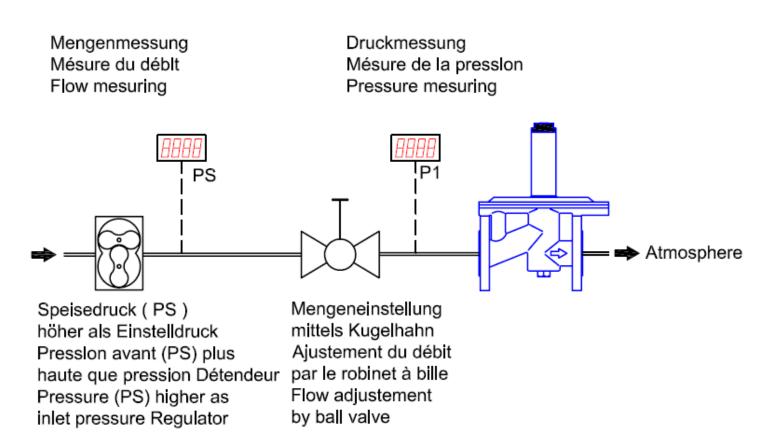
Testing

Tightness test:

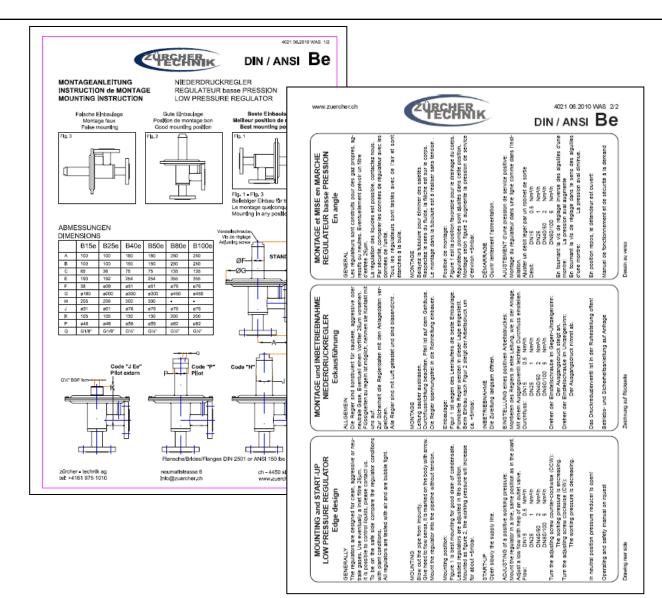


ADJUSTING of a positive working pressure: Mount the regulator in a line, same position as in the plant. Adjust a low flow with help of an outlet valve. Flow: DN15 0.5 Nm³/h DN25 1 Nm³/h DN40/50 2 Nm³/h DN80/100 5 Nm³/h Turn the adjusting screw counter-clockwise (CCW): The working pressure is encreasing. Turn the adjusting screw clockwise (CW):

The working pressure is decreasing.

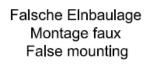


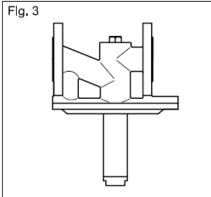
Reducing regulator

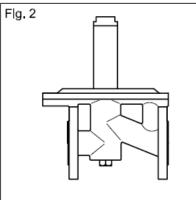


Relief regulator

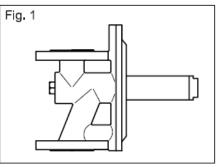
Mounting and operation (Safety)






MONTAGEANLEITUNG INSTRUCTION de MONTAGE MOUNTING INSTRUCTION

NIEDERDRUCKREGLER REGULATEUR basse PRESSION LOW PRESSURE REGULATOR



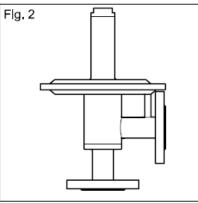
Gute Einbaulage Position de montage bon Good mounting position

Beste Einbaulage Mellieur position de montage Best mounting position

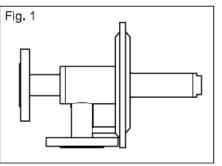
Flg. 1 - Flg. 3 Beliebiger Einbau für trockene Gase Le montage quelconque pour gaz sec Mounting in any position for dry gases

MONTAGEANLEITUNG INSTRUCTION de MONTAGE MOUNTING INSTRUCTION

Falsche Elnbaulage Montage faux False mounting



Gute Einbaulage Position de montage bon Good mounting position


NIEDERDRUCKREGLER

REGULATEUR basse PRESSION

LOW PRESSURE REGULATOR

Beste Einbaulage Mellleur position de montage Best mounting position

Flg. 1 - Flg. 3 Beliebiger Einbau für trockene Gase Le montage quelconque pour gaz sec Mounting in any position for dry gases

GENERALLY

The regulators are designed for clean, aggressive or neutrale gases. Use eventually a inlet filtre 25µm. It is possible to control liquids, please contact us. To be on the safe side compare the regulator conditions with plant conditions.

All regulators are tested with air and are bubble tight.

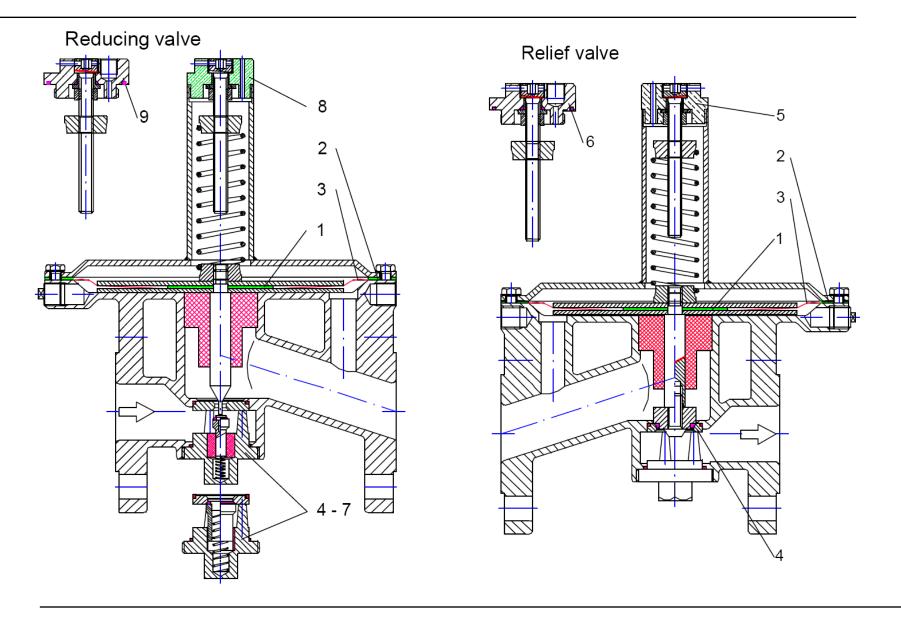
MOUNTING

Blow out the pipe from impurity.

Give heed to flow sense, it is marked on the body with arrow.

Mount the regulator into the pipeline without tension.

START-UP Open slowly the supply line.

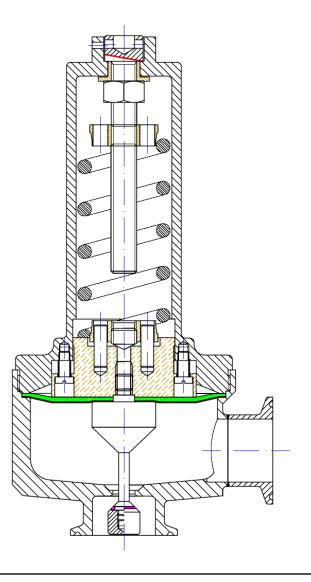


Trouble shooting:

problem	cause	repair
Rise in outlet pressure	- damaged main valve or seat	- fit new regulator
	- dirty main valve or seat	- clean
	- broken valve spring	 replace spring
	- damaged o-ring	- replace o-ring
Inability to control	- broken main spring	- replace

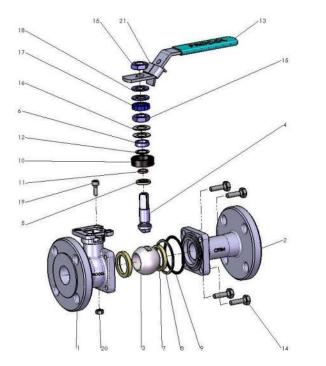
Spare parts

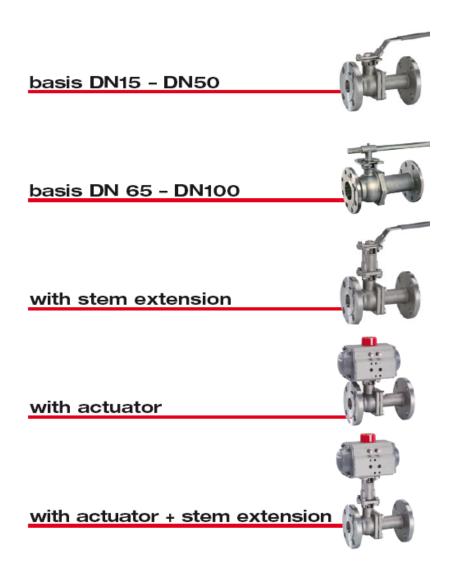
Medium Pressure Regulators (MR- und MS-Serie)

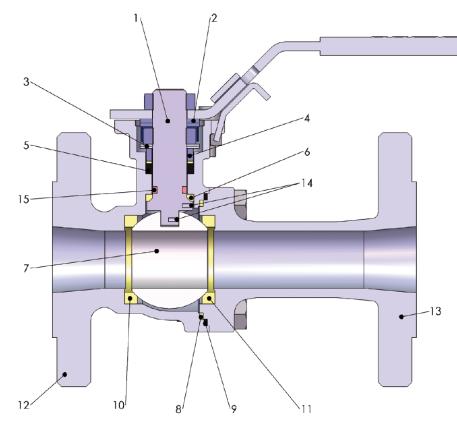


Highlights

- Regulating range up to 16 bar / 300 psi
- Withstands full vacuum
- Self draining
- Soft seat capability for ANSI Class VI shutoff
- No guiding surface in the fluid
- Stainless steel regulators
- Nickel alloy regulators
- **PVDF** regulators
- Sanitary regulators
- Cleaning-in-Place (CIP)
- Steaming-in-Place (SIP)

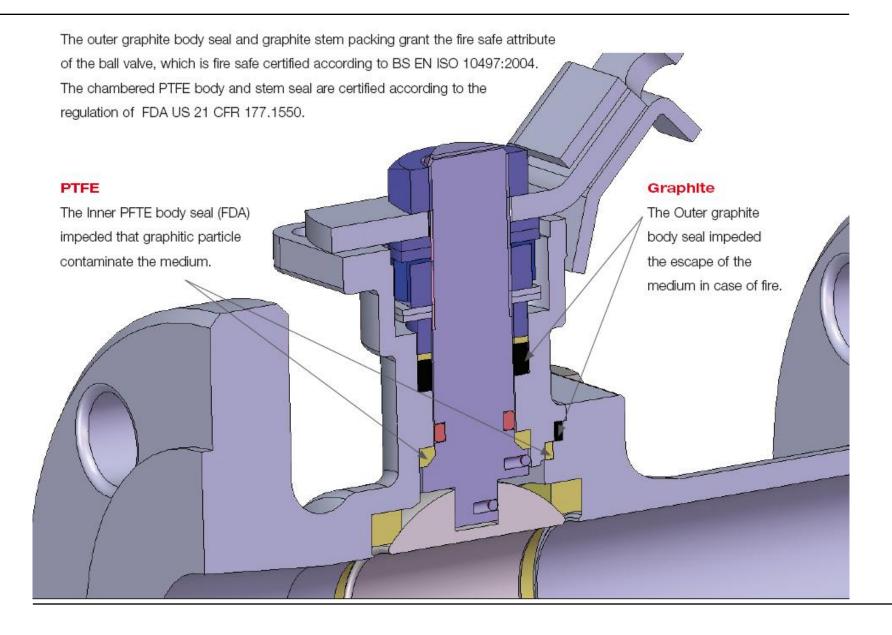

. Functions	2. Connections	3. Bodies	4. Accessories		
VIR Reducer	A ANSI Flanges 150 lbs	S 316 L (1.4404)	H Heating Jacket		
VIRC Sanitary-Reducer	D DIN Flanges PN16 / PN10	H Nickel alloy	P Adjusted and Sealed		
P Pilot Pressure Design	C1 Clamp ISO 1127-1	P PVDF	M Pressure Gauge		
	C2 Clamp DIN 32676	X Special	V Pressure Gauge Fitting		
VIS Back Pressure Regulator	C3 Clamp OD / ASME		X Special		
VISC Sanitary-Back Pressure Regulator	C4 Clamp SMS	Trim Parts			
P Pilot Pressure Design	C5 Food Union DIN 11851	S 316 L (1.4404)			
	G BSP Thread fem	H Nickel alloy			
	N NPT Thread fem	P PVDF			
	S Flanges with slot DIN 2512	X Special			
	X Special				
Sizes	Seats Ø	Seats O-Ring			
25 DN 25 (1")	(06,10,14)R Direct Action	K FFKM (Kalrez® 6375)			
	(14,21)S Relief Seat	V FPM (Viton®)			
		C FFKM FDA (Kalrez® 6221)			
		X Special			
	Springs				
Patterns	L 0.04 to 0.25 bar / 0. to 0.15 psi	Diaphragms			
i Inline Pattern	A 0.15 to 1 bar / 1.5 to 15 psi	P PTFE			
e Angle Pattern	B 0.4 to 3 bar / 6 to 40 psi	V FPM			
	C 0.6 to 5 bar / 12 to 70 psi	E EPDM white FDA			
	J Dome Loaded	X Special			
	Donne Loaded				


Type AF90D



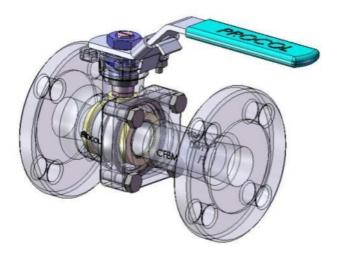
Acceptance / Certificates

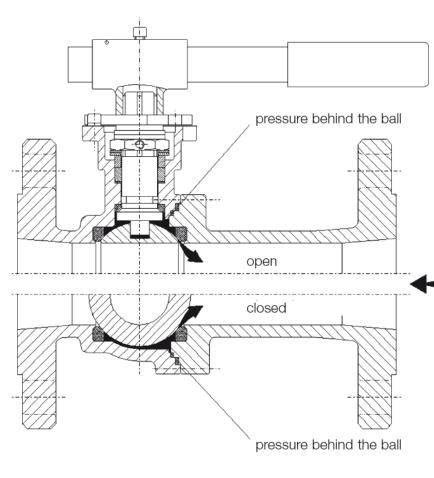
- ATEX Ex II 2 GDc IIB/IIC
- CE0036 acc. to PED 97/23/EC
- Fire safe acc. to BS EN ISO 10497:2004
- Seals acc. FDA 21CFR 177.1550
- DIN EN 12266-1:2003
- TA-Luft acc. to VDI 2440



Pos.	Description	Material
1	Stem	1.4401
2	Distancer	1.4435
3	Belleville Washer	1.4301
4	Stem Seal Follower	1.4401
5	Stem Packing	Graphite/PTFE
6	Stem Washer	PTFE
7	Ball	1.4401
8	Body Seal Wetted Side	PTFE
9	Body Seal Outside	Graphite
10	Seat Ring	PTFE
11	Seat Ring (pressure releasing)	PTFE / FEP
12	Body	1.4408/CF8M/A216WCB
13	Flange	1.4408/CF8M/A216WCB
14	Antistatic Device	1.4401
15	O-Ring	NBR / FEP

Double sealing system

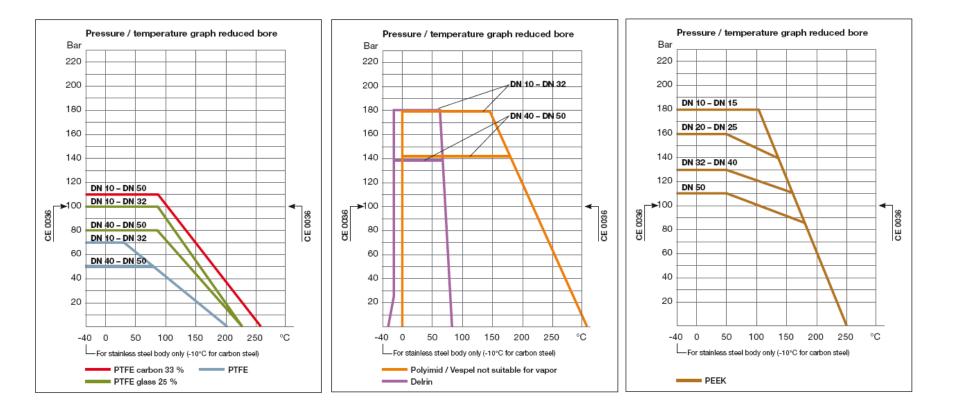




Ball valves equipped with an automatically pressure releasing system prevent the uncontrolled pressure increase between ball and body.

- no damage of the ball seats
- no leckage
- no blockage

- DN 8 DN 40 full port
- DN 15 DN 50 reduced port
- PN 180 bar 2600 psi
- Temperature max. 310°C
- Encapsulated body bolts
- Forged material, stainless steel 1.4404, carbon steel A105N
- ISO 5211 mounting pad for easy automation
- Solid ball
- Various seat materials
- Wide range of accessoires



Certification

- Firesafe BS 6755/2-API 607
- PED 97/23/EG CE 0036
- ATEX 🐼 II 2GD cll/B/llc
- US FDA 21cFR

Thank you